论文标题

通过基于序列的过载表示,快速,紧凑且高度可扩展的视觉位置识别

Fast, Compact and Highly Scalable Visual Place Recognition through Sequence-based Matching of Overloaded Representations

论文作者

Garg, Sourav, Milford, Michael

论文摘要

Visual Plote识别算法以三个关键特征进行贸易:它们的存储足迹,其计算要求以及其由此产生的性能,通常以召回率表示。重要的先前工作已经调查了高度紧凑的位置表示,次线性计算缩放缩放和亚线性存储缩放技术,但始终在其中一个或多个方面涉及重大折衷,并且仅在相对较小的数据集中得到证明。在本文中,我们介绍了一个新颖的地方识别系统,该系统首次实现了超紧凑型位置表示,接近次线性存储缩放和极轻的计算要求的组合。我们的方法通过故意基于基于量表的量子量的哈希进行了更多的碰撞,但通过基于序列的匹配来解决,我们的方法在机器人域中利用了许多空间数据的固有顺序性质,并扭转了典型的目标标准。我们首次展示了如何在一个新的非常大的1000万个位置数据集上实现有效的位置识别率,只需要8个字节的每个位置存储空间和37K的统一操作才能实现超过50%的召回率,以匹配100帧的序列,其中传统的先进方法两者都消耗了1300倍的灾难,并且在灾难性的效果上消失了1300倍。我们提出了分析,研究了在量化的矢量长度的不同大小下,散布过载方法的有效性,将近距离匹配与实际匹配选择的比较,并表征了数据对量化的差异的效果。

Visual place recognition algorithms trade off three key characteristics: their storage footprint, their computational requirements, and their resultant performance, often expressed in terms of recall rate. Significant prior work has investigated highly compact place representations, sub-linear computational scaling and sub-linear storage scaling techniques, but have always involved a significant compromise in one or more of these regards, and have only been demonstrated on relatively small datasets. In this paper we present a novel place recognition system which enables for the first time the combination of ultra-compact place representations, near sub-linear storage scaling and extremely lightweight compute requirements. Our approach exploits the inherently sequential nature of much spatial data in the robotics domain and inverts the typical target criteria, through intentionally coarse scalar quantization-based hashing that leads to more collisions but is resolved by sequence-based matching. For the first time, we show how effective place recognition rates can be achieved on a new very large 10 million place dataset, requiring only 8 bytes of storage per place and 37K unitary operations to achieve over 50% recall for matching a sequence of 100 frames, where a conventional state-of-the-art approach both consumes 1300 times more compute and fails catastrophically. We present analysis investigating the effectiveness of our hashing overload approach under varying sizes of quantized vector length, comparison of near miss matches with the actual match selections and characterise the effect of variance re-scaling of data on quantization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源