论文标题

随机矩阵理论证明,Gan-Data的深度学习表示形式是高斯混合物

Random Matrix Theory Proves that Deep Learning Representations of GAN-data Behave as Gaussian Mixtures

论文作者

Seddik, Mohamed El Amine, Louart, Cosme, Tamaazousti, Mohamed, Couillet, Romain

论文摘要

本文表明,生成对抗网(gans)产生的数据的深度学习(DL)表示是随机向量,它们属于所谓的\ textit {浓缩}随机向量的类别。进一步利用以下事实:gram矩阵,$ g = x^t x $,$ x = [x_1,\ ldots,x_n] \ in \ mathbb {r}^{r}^{p \ times n} $和$ x_i $ $ x_i $ $ $ $ $ $ $ $ $从高斯混合物中得出的,这表明GAN-DATA的DL表示可以通过其前两个统计矩对广泛的标准分类器进行充分描述。我们的理论发现是通过使用BigGan模型以及通过不同流行的深层表示网络生成图像来验证的。

This paper shows that deep learning (DL) representations of data produced by generative adversarial nets (GANs) are random vectors which fall within the class of so-called \textit{concentrated} random vectors. Further exploiting the fact that Gram matrices, of the type $G = X^T X$ with $X=[x_1,\ldots,x_n]\in \mathbb{R}^{p\times n}$ and $x_i$ independent concentrated random vectors from a mixture model, behave asymptotically (as $n,p\to \infty$) as if the $x_i$ were drawn from a Gaussian mixture, suggests that DL representations of GAN-data can be fully described by their first two statistical moments for a wide range of standard classifiers. Our theoretical findings are validated by generating images with the BigGAN model and across different popular deep representation networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源