论文标题

集体SU的量子阶段(3)带有两部分对称性的自旋系统

Quantum phases of collective SU(3) spin systems with bipartite symmetry

论文作者

Jakab, Dávid, Zimborás, Zoltán

论文摘要

我们研究了双方集体旋转 - $ 1 $模型,并在旋转之间进行交换相互作用。模型的两分性质表现出来,旋转被分为两个相等大小的子系统。在每个子系统中,自旋旋转相互作用具有相同的强度,在它们也相等的子系统中,但是子系统内部和整个子系统之间的两个耦合值都不同。这种设置的灵感来自最近对超低原子的实验。使用$ \ mathrm {su}(3)$ - 交换交互的对称性和子系统内的置换对称性,我们可以在两个coupling-strengths的整个参数空间中使用表示理论方法来对角化系统的汉密尔顿。然后,这些技术使我们能够明确构建和探索地面相图。相图证明具有富含间隙和无间隙相位的富含。一个有趣的观察结果是,这五个阶段之一具有强大的两分对称性破坏,这意味着地面状态中的两个子系统处于不同的$ \ mathrm {su}(3)$表示。

We study a bipartite collective spin-$1$ model with exchange interaction between the spins. The bipartite nature of the model manifests itself by the spins being divided into two equal-sized subsystems; within each subsystem the spin-spin interactions are of the same strength, across the subsystems they are also equal, but the two coupling values within and across the subsystem are different. Such a set-up is inspired by recent experiments with ultracold atoms. Using the $\mathrm{SU}(3)$-symmetry of the exchange interaction and the permutation symmetry within the subsystems, we can employ representation theoretic methods to diagonalize the Hamiltonian of the system in the entire parameter space of the two coupling-strengths. These techniques then allow us to explicitly construct and explore the ground-state phase diagram. The phase diagram turns out to be rich containing both gapped and gapless phases. An interesting observation is that one of the five phases features a strong bipartite symmetry breaking, meaning that the two subsystems in the ground states are in different $\mathrm{SU}(3)$ representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源