论文标题

调整一条裤子

Tailoring a pair of pants

论文作者

Ruddat, Helge, Zharkov, Ilia

论文摘要

我们展示了如何变形地图$ \ peratatorName {log} \ colon(\ mathbb {c}^*) $ p^\ circ \ subset {((\ mathbb {c}^*)^n} $以及两个skeleta $ s $ s \ timesσ\ subset \ subset \ mathcal {a} \ times \ times \ mathcal {c} c} amoeeba $ \ nathcal \ mathcal \ nathcal \ nathcal coam coam的天然多面体子$ p^\ circ $的$ \ MATHCAL {C} $。这为拓扑strominger-yau-zaslow圆环纤维纤维中的判别物构成了判别物2的基础。

We show how to deform the map $\operatorname{Log}\colon (\mathbb{C}^*)^n \to \mathbb{R}^n$ such that the image of the complex pair of pants $P^\circ \subset {(\mathbb{C}^*)^n}$ is the tropical hyperplane by showing an (ambient) isotopy between $P^\circ \subset {(\mathbb{C}^*)^n}$ and a natural polyhedral subcomplex of the product of the two skeleta $S\times Σ\subset \mathcal{A} \times \mathcal{C}$ of the amoeba $\mathcal{A}$ and the coamoeba $\mathcal{C}$ of $P^\circ$. This lays the groundwork for having the discriminant to be of codimension 2 in topological Strominger-Yau-Zaslow torus fibrations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源