论文标题

在张量训练格式的近似高斯密度的等级范围

Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format

论文作者

Rohrbach, Paul B., Dolgov, Sergey, Grasedyck, Lars, Scheichl, Robert

论文摘要

低量张量近似值显示出在高维度中的不确定性定量的巨大潜力,例如,构建可用于加快大规模推理问题的替代模型(Eigel等人,逆问题34,2018; Dolgov等人,统计和计算30,2020,2020)。此类方法的可行性和效率取决于代表或近似基础分布所必需的等级。在本文中,开发了高斯模型情况下的功能张量训练表示近似值的A-Priori等级界限。结果表明,在精确矩阵上的适当条件下,高斯密度可以近似于高精度,而不会随着尺寸的增加而遭受指数级的复杂性生长。这些结果在简单但重要的模型案例中提供了对适用性和低量张量方法的局限性的严格理由。数值实验证实,当改变精度矩阵的参数和近似的精度时,等级边界捕获了等级结构的定性行为。最后,在贝叶斯过滤问题的背景下证明了理论结果的实际相关性。

Low-rank tensor approximations have shown great potential for uncertainty quantification in high dimensions, for example, to build surrogate models that can be used to speed up large-scale inference problems (Eigel et al., Inverse Problems 34, 2018; Dolgov et al., Statistics & Computing 30, 2020). The feasibility and efficiency of such approaches depends critically on the rank that is necessary to represent or approximate the underlying distribution. In this paper, a-priori rank bounds for approximations in the functional tensor-train representation for the case of Gaussian models are developed. It is shown that under suitable conditions on the precision matrix, the Gaussian density can be approximated to high accuracy without suffering from an exponential growth of complexity as the dimension increases. These results provide a rigorous justification of the suitability and the limitations of low-rank tensor methods in a simple but important model case. Numerical experiments confirm that the rank bounds capture the qualitative behavior of the rank structure when varying the parameters of the precision matrix and the accuracy of the approximation. Finally, the practical relevance of the theoretical results is demonstrated in the context of a Bayesian filtering problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源