论文标题
关于循环多项式中力量的算术进行
On Arithmetic Progressions of Powers in Cyclotomic Polynomials
论文作者
论文摘要
我们确定与$φ_{n} $相对应的幂/负系数相对应的功率的必要条件。当$ n = pq $对于任何素数$ q> p> 2 $时,我们的条件也足够了。最后,当$ n = pq $概括为Bachman首次引入的所谓包含 - 排斥多项式时,结果将结果概括。
We determine necessary conditions for when powers corresponding to positive/negative coefficients of $Φ_{n}$ are in arithmetic progression. When $n = pq$ for any primes $q>p>2$, our conditions are also sufficient. Finally, we generalize the result when $n = pq$ to the so-called inclusion-exclusion polynomials first introduced by Bachman.