论文标题

主动推论下的神经动力学:信息处理的合理性和效率

Neural dynamics under active inference: plausibility and efficiency of information processing

论文作者

Da Costa, Lancelot, Parr, Thomas, Sengupta, Biswa, Friston, Karl

论文摘要

主动推断是在自由能原理下解释行为的规范框架 - 一种源于神经科学的自我组织理论。它根据(变化)自由能的下降来指定状态估计的神经元动力学 - 衡量内部(生成)模型与感觉观察之间的拟合度。自由能梯度是一个预测误差 - 在神经元种群的平均膜电位中合理地编码。相反,状态的预期概率可以用神经元的发射率表示。我们表明,这与当前的神经元动力学模型一致,并通过合成合理的电生理反应来建立面部有效性。然后,我们表明这些神经元动力学近似于自然梯度下降,这是信息几何形状的众所周知的优化算法,该算法是信息空间中目标最陡峭下降的最陡峭下降。我们比较了两个方案中信念更新的信息长度,这是对信息空间中传播的距离的度量,该距离在代谢成本方面具有直接解释。我们表明,活跃推理下的神经动力学在代谢上是有效的,并且表明生物学剂中的神经表示可以通过近似于信息空间中最陡的下降到最佳推理点来发展。

Active inference is a normative framework for explaining behaviour under the free energy principle -- a theory of self-organisation originating in neuroscience. It specifies neuronal dynamics for state-estimation in terms of a descent on (variational) free energy -- a measure of the fit between an internal (generative) model and sensory observations. The free energy gradient is a prediction error -- plausibly encoded in the average membrane potentials of neuronal populations. Conversely, the expected probability of a state can be expressed in terms of neuronal firing rates. We show that this is consistent with current models of neuronal dynamics and establish face validity by synthesising plausible electrophysiological responses. We then show that these neuronal dynamics approximate natural gradient descent, a well-known optimisation algorithm from information geometry that follows the steepest descent of the objective in information space. We compare the information length of belief updating in both schemes, a measure of the distance traveled in information space that has a direct interpretation in terms of metabolic cost. We show that neural dynamics under active inference are metabolically efficient and suggest that neural representations in biological agents may evolve by approximating steepest descent in information space towards the point of optimal inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源