论文标题
一种具有线性复杂性的多向量界面准Newton方法,用于分区的流体结构相互作用
A Multi-Vector Interface Quasi-Newton Method with Linear Complexity for Partitioned Fluid-Structure Interaction
论文作者
论文摘要
近年来,界面准牛顿方法通过显着改善分配的溶液方案而引起了流体结构互动群落的越来越多的关注:它们不仅有助于控制固有的添加质量不稳定性,而且证明可以大大加快耦合的融合。在这项工作中,我们提出了一种新颖的变体:关键思想是建立Bogaers等人首先提出的多向量Jacobian更新方案。 (2014年),避免(逆)雅各布近似的任何明确表示,因为它会减慢大型系统的解决方案。相反,所有涉及二次复杂性的术语均已系统地消除。结果是一种新的多矢量接口准牛顿变体,其计算成本与问题大小线性缩放。
In recent years, interface quasi-Newton methods have gained growing attention in the fluid-structure interaction community by significantly improving partitioned solution schemes: They not only help to control the inherent added-mass instability, but also prove to substantially speed up the coupling's convergence. In this work, we present a novel variant: The key idea is to build on the multi-vector Jacobian update scheme first presented by Bogaers et al. (2014) and avoid any explicit representation of the (inverse) Jacobian approximation, since it slows down the solution for large systems. Instead, all terms involving a quadratic complexity have been systematically eliminated. The result is a new multi-vector interface quasi-Newton variant whose computational cost scales linearly with the problem size.