论文标题

在图上随机步行的超组和距离分布

Hypergroups and distance distributions of random walks on graphs

论文作者

Endo, Kenta, Mimura, Ippei, Sawada, Yusuke

论文摘要

Wildberger的构造使我们能够通过随机步行从特殊图形获得超组。我们将对超级组上的产品进行理论解释。可以通过换向代数识别高组的基础是过渡矩阵。我们将估计这种过渡矩阵的操作员规范,并阐明其矩阵产品与随机步行之间的关系。

Wildberger's construction enables us to obtain a hypergroup from a special graph via random walks. We will give a probability theoretic interpretation to products on the hypergroup. The hypergroup can be identified with a commutative algebra whose basis is transition matrices. We will estimate the operator norm of such a transition matrix and clarify a relationship between their matrix products and random walks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源