论文标题

强化学习基于高度移动毫米波通信的车辆细胞协会算法

Reinforcement Learning Based Vehicle-cell Association Algorithm for Highly Mobile Millimeter Wave Communication

论文作者

Khan, Hamza, Elgabli, Anis, Samarakoon, Sumudu, Bennis, Mehdi, Hong, Choong Seon

论文摘要

车辆到所有(V2X)通信是与各种用例的沟通越来越多的领域。本文研究了毫米波(MMWave)通信网络中车辆电池关联的问题。目的是使每个车辆用户(VUE)的时间平均率最大化,同时确保所有信号开销低的VUE的目标最低率。我们首先将用户(车辆)关联问题作为离散的非凸优化问题。然后,通过利用机器学习的工具,专门分配了深度加固学习(DDRL)和异步演员评论家算法(A3C),我们提出了一种低复杂性算法,该算法近似于提议的优化问题的解决方案。拟议的基于DDRL的算法将每个道路侧单元(RSU)赋予本地RL代理,该RL代理根据观察到的输入状态选择局部操作。不同RSU的动作被转发到一个中央实体,该实体计算全球奖励,然后将其馈回RSU。结果表明,与运行在线复杂算法相比,每个受独立训练的RL执行具有低控制开销的车辆RSU关联动作,计算复杂性较小,以解决非convex优化问题。最后,仿真结果表明,与几种基线设计相比,所提出的解决方案以总和率和VUE中断的20 \%降低而达到20 \%。

Vehicle-to-everything (V2X) communication is a growing area of communication with a variety of use cases. This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks. The aim is to maximize the time average rate per vehicular user (VUE) while ensuring a target minimum rate for all VUEs with low signaling overhead. We first formulate the user (vehicle) association problem as a discrete non-convex optimization problem. Then, by leveraging tools from machine learning, specifically distributed deep reinforcement learning (DDRL) and the asynchronous actor critic algorithm (A3C), we propose a low complexity algorithm that approximates the solution of the proposed optimization problem. The proposed DDRL-based algorithm endows every road side unit (RSU) with a local RL agent that selects a local action based on the observed input state. Actions of different RSUs are forwarded to a central entity, that computes a global reward which is then fed back to RSUs. It is shown that each independently trained RL performs the vehicle-RSU association action with low control overhead and less computational complexity compared to running an online complex algorithm to solve the non-convex optimization problem. Finally, simulation results show that the proposed solution achieves up to 15\% gains in terms of sum rate and 20\% reduction in VUE outages compared to several baseline designs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源