论文标题

动态多对象高斯过程模型:人类关节的数据驱动功能建模的框架

Dynamic multi-object Gaussian process models: A framework for data-driven functional modelling of human joints

论文作者

Fouefack, Jean-Rassaire, Borotikar, Bhushan, Douglas, Tania S., Burdin, Valérie, Mutsvangwa, Tinashe E. M.

论文摘要

统计形状模型(SSM)是用于提取和解释一组生物结构特征的最先进的医学图像分析工具。但是,由于三个主要问题:1)数据的非均匀性(具有跨特征的线性和非线性自然变化的数据),2)2)$ 3D $运动的非优势表示(刚性转换表示与KINETIC在一个模型中成比例的型号,而将一个模型成比例的型号),这是一种不合时宜的数据(2),一种与其他模型相比,一种刚性转换代表的非均值表示,与其他模型不成比例的人工两体委托,以及一个模型的三个模型,以及3章的动作,一种不佳的代表,将数据与其他模型不成比例,以及一个位置的三个位置。在本文中,我们为动态多对象统计建模框架提出了一个新的框架,以分析连续域中的人类关节。具体而言,我们建议在相同的线性统计空间中标准化形状和动态空间特征,允许使用线性统计。我们采用最佳的3D运动表示,以进行更准确的刚性转换比较;我们使用基于蒙特卡洛采样的拟合提供了3D形状和姿势预测方案。该框架为生物接头提供了有效的生成动态多物体建模平台。我们使用受控的合成数据验证框架。最后,将框架应用于对人肩关节的分析,以将其性能与标准SSM方法的预测进行比较,同时增加了确定复合物中骨骼之间相对姿势的优势。观察到了良好的有效性,并且肩部联合形状置式预测结果表明,新型框架可能具有一系列医学图像分析应用程序的实用性。此外,该框架是通用的,可以扩展到n $> $ 2的对象,使其适用于用于管理关节疾病的临床和诊断方法。

Statistical shape models (SSMs) are state-of-the-art medical image analysis tools for extracting and explaining features across a set of biological structures. However, a principled and robust way to combine shape and pose features has been illusive due to three main issues: 1) Non-homogeneity of the data (data with linear and non-linear natural variation across features), 2) non-optimal representation of the $3D$ motion (rigid transformation representations that are not proportional to the kinetic energy that move an object from one position to the other), and 3) artificial discretization of the models. In this paper, we propose a new framework for dynamic multi-object statistical modelling framework for the analysis of human joints in a continuous domain. Specifically, we propose to normalise shape and dynamic spatial features in the same linearized statistical space permitting the use of linear statistics; we adopt an optimal 3D motion representation for more accurate rigid transformation comparisons; and we provide a 3D shape and pose prediction protocol using a Markov chain Monte Carlo sampling-based fitting. The framework affords an efficient generative dynamic multi-object modelling platform for biological joints. We validate the framework using a controlled synthetic data. Finally, the framework is applied to an analysis of the human shoulder joint to compare its performance with standard SSM approaches in prediction of shape while adding the advantage of determining relative pose between bones in a complex. Excellent validity is observed and the shoulder joint shape-pose prediction results suggest that the novel framework may have utility for a range of medical image analysis applications. Furthermore, the framework is generic and can be extended to n$>$2 objects, making it suitable for clinical and diagnostic methods for the management of joint disorders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源