论文标题
分解代数和Abelian CS/WZW型对应关系
Factorization algebras and abelian CS/WZW-type correspondences
论文作者
论文摘要
我们在具有边界的流形上开发了一种自由场理论的量化方法,其中散装理论是拓扑的,朝向正常,局部边界条件被施加。我们的方法是在Batalin-Vilkovisky形式主义内。在可观察到的水平上,构造产生了一个分层的分解代数,该代数在批量上恢复了Costello和Gwilliam开发的分解代数。边界层上的分解代数与该大量分解代数具有扰动的散装对应关系。一个中心示例是Abelian Chern-Simons/Wess-Zumino-witten对应关系的分解代数版本,但是我们检查了与弦理论和$ M $理论的全体形态截断有关的较高维度概括,并涉及中间的Jacobians。
We develop a method of quantization for free field theories on manifolds with boundary where the bulk theory is topological in the direction normal to the boundary and a local boundary condition is imposed. Our approach is within the Batalin-Vilkovisky formalism. At the level of observables, the construction produces a stratified factorization algebra that in the bulk recovers the factorization algebra developed by Costello and Gwilliam. The factorization algebra on the boundary stratum enjoys a perturbative bulk-boundary correspondence with this bulk factorization algebra. A central example is the factorization algebra version of the abelian Chern-Simons/Wess-Zumino-Witten correspondence, but we examine higher dimensional generalizations that are related to holomorphic truncations of string theory and $M$-theory and involve intermediate Jacobians.