论文标题
关于三个manifolds的链接的框架
On framings of links in 3-manifolds
论文作者
论文摘要
我们表明,以定向$ 3 $ -MANIFOLD更改环境同位素的链接框架的唯一方法是,当歧管具有正确嵌入的非分离$ S^2 $时。框架的这种变化是由Dirac Trick(也称为灯泡技巧)给出的。我们使用的主要工具是基于麦卡洛(McCullough)在$ 3 $ manifolds的映射类组上的工作。我们还将结果与绞线模块的理论联系起来。
We show that the only way of changing the framing of a link by ambient isotopy in an oriented $3$-manifold is when the manifold has a properly embedded non-separating $S^2$. This change of framing is given by the Dirac trick, also known as the light bulb trick. The main tool we use is based on McCullough's work on the mapping class groups of $3$-manifolds. We also relate our results to the theory of skein modules.