论文标题

输入驱动的复发神经网络中的回声指数和多稳定性

The Echo Index and multistability in input-driven recurrent neural networks

论文作者

Ceni, Andrea, Ashwin, Peter, Livi, Lorenzo, Postlethwaite, Claire

论文摘要

复发性神经网络(RNN)具有回声状态属性(ESP),如果对于给定的输入序列,``忘记''''''''''''''''任何内部状态''(非自主)系统的任何内部状态并渐近地遵循独特的,可能是复杂的轨迹。通常,缺乏ESP被理解为RNN中缺乏可靠的行为。在这里,我们表明,RNN可以在更一般的原理下可靠地执行计算,该原则仅解释其在相空间中的本地行为。为此,我们制定了ESP的概括,并引入了回声索引来表征驱动的RNN的同时稳定响应的数量。我们表明,回声索引可能会随输入而变化,这突出了RNN中的潜在计算错误来源,这是由于驱动动力学的输入的特征。

A recurrent neural network (RNN) possesses the echo state property (ESP) if, for a given input sequence, it ``forgets'' any internal states of the driven (nonautonomous) system and asymptotically follows a unique, possibly complex trajectory. The lack of ESP is conventionally understood as a lack of reliable behaviour in RNNs. Here, we show that RNNs can reliably perform computations under a more general principle that accounts only for their local behaviour in phase space. To this end, we formulate a generalisation of the ESP and introduce an echo index to characterise the number of simultaneously stable responses of a driven RNN. We show that it is possible for the echo index to change with inputs, highlighting a potential source of computational errors in RNNs due to characteristics of the inputs driving the dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源