论文标题

实时RGB-D流的增强和整合的几何代理

Geometric Proxies for Live RGB-D Stream Enhancement and Consolidation

论文作者

Kaiser, Adrien, Zepeda, José Alonso Ybanez, Boubekeur, Tamy

论文摘要

我们为RGB-D数据的统一实时处理提出了一个几何上层建筑。现代RGB-D传感器被广泛用于室内3D捕获,其应用程序从建模到机器人技术,通过增强现实。然而,它们的使用受到低分辨率的限制,框架通常被噪声,缺少的数据和时间矛盾而损坏。我们的方法包括通过时间生成和更新一组紧凑的局部统计信息,而不是从原始RGB-D数据中馈出的几何代理。我们的代理提供了几种处理基础,可以飞行改善RGB-D流的质量或减轻进一步的操作。实验结果证实,与最先进的方法相比,我们的轻量级分析框架与嵌入式执行以及中等记忆和计算能力相比,很好地应对。使用我们的代理处理RGB-D数据可以使噪声和时间闪烁的去除,孔填充和重新采样。作为观察到的场景的替代品,我们的代理还可以应用于压缩和场景重建。我们介绍了在最近开放的RGB-D数据集中不同本质的室内场景中使用框架进行的实验。

We propose a geometric superstructure for unified real-time processing of RGB-D data. Modern RGB-D sensors are widely used for indoor 3D capture, with applications ranging from modeling to robotics, through augmented reality. Nevertheless, their use is limited by their low resolution, with frames often corrupted with noise, missing data and temporal inconsistencies. Our approach consists in generating and updating through time a single set of compact local statistics parameterized over detected geometric proxies, which are fed from raw RGB-D data. Our proxies provide several processing primitives, which improve the quality of the RGB-D stream on the fly or lighten further operations. Experimental results confirm that our lightweight analysis framework copes well with embedded execution as well as moderate memory and computational capabilities compared to state-of-the-art methods. Processing RGB-D data with our proxies allows noise and temporal flickering removal, hole filling and resampling. As a substitute of the observed scene, our proxies can additionally be applied to compression and scene reconstruction. We present experiments performed with our framework in indoor scenes of different natures within a recent open RGB-D dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源