论文标题
在分析功能的不同希尔伯特空间上的奇异算子数量的比较
Comparison of singular numbers of composition operators on different Hilbert spaces of analytic functions
论文作者
论文摘要
我们比较了给定的成分运算符的单数衰减率,该构图运算符在单位磁盘$ \ d $上作用于分析功能的各种Hilbert空间。 我们表明,对于耐寒和伯格曼的空间,我们的结果很清晰。我们还用'cusp映射''和镜头图的符号对组成操作员的奇异数字进行了更低的估计,并作用于加权的Dirichlet空间。
We compare the rate of decay of singular numbers of a given composition operator acting on various Hilbert spaces of analytic functions on the unit disk $\D$. We show that for the Hardy and Bergman spaces, our results are sharp. We also give lower and upper estimates of the singular numbers of the composition operator with symbol the ``cusp map'' and the lens maps, acting on weighted Dirichlet spaces.