论文标题

近乎添加的跨度和近乎脱落的啤酒花,统一的视图

Near-Additive Spanners and Near-Exact Hopsets, A Unified View

论文作者

Elkin, Michael, Neiman, Ofer

论文摘要

给定一个{\ em未加权}的无向图$ g =(v,e)$和一对参数$ε> 0 $,$β= 1,2,\ ldots $,a子graph $ g'=(v,h)$,$ h \ h \ sebseteq e $,$ g $ as $ g $ as a { {\ em近添加剂})$ g $,如果对于每个$ u,v $,$$ d_ d_ {g'}(u,v)\ le(1 +ε)d_g(u,v)d_g(u,v) + β〜。$。$。 1,2,\ ldots $,存在$(1+ε,β)$ - SPANNER $ g'$,带有$ o_ {ε,κ}(n^{1+1/κ})$边缘,带有$β=β=β=β_{ep {ep} = \ weft( 2}〜。$$此绑定仍然是最新的,并且其对$ε$的依赖(对于小$κ$的情况下)在\ cite {abp18}中被证明很紧。 给定一个{\ em加权}无向图$ g =(v,e,ω)$和一对参数$ε> 0 $,$β= 1,2,\ ldots $,a图$ g'=(v,h,ω')$是a {\ em $ $ $ $(1+ε,β)$ - β) $ g $如果对于每个$ u,v $,$$ d_g(u,v)\ le d_ {g \ cup g'}^{(β)}(u,v)\ le(1+ε)d_g(u,v) $β$ - (HOP)在Union Graph $ g \ cup g'$中$ u $和$ v $之间的结合距离。在\ cite {en16}中显示,对于上述任何$ n $ vertex $ g $和$ε$和$κ$,都存在$(1+ε,β)$ - 带有$ \ tilde {o} {o}(o}(n^{1+1+1/κ})$ EDGES,$ evge,$β= ep} $ eps $ epse。 \ cite {ep01}和\ cite {en16}的两个结果不仅非常相似,而且它们的证明技术也是如此。此外,Thorup-Zwick后来在\ cite {en19,hp17}中显示了近加性跨度\ cite {tz06}的构造,以提供类似的杂种(\ cite {tz06})特性。 在这项调查中,我们探讨了这种有趣的现象,绘制用于这些结果的基本证明技术,并突出介绍开放的问题。

Given an {\em unweighted} undirected graph $G = (V,E)$, and a pair of parameters $ε> 0$, $β= 1,2,\ldots$, a subgraph $G' =(V,H)$, $H \subseteq E$, of $G$ is a {\em $(1+ε,β)$-spanner} (aka, a {\em near-additive spanner}) of $G$ if for every $u,v \in V$, $$d_{G'}(u,v) \le (1+ε)d_G(u,v) + β~.$$ It was shown in \cite{EP01} that for any $n$-vertex $G$ as above, and any $ε> 0$ and $κ= 1,2,\ldots$, there exists a $(1+ε,β)$-spanner $G'$ with $O_{ε,κ}(n^{1+1/κ})$ edges, with $$β= β_{EP} = \left({{\log κ} \over ε}\right)^{\log κ- 2}~.$$ This bound remains state-of-the-art, and its dependence on $ε$ (for the case of small $κ$) was shown to be tight in \cite{ABP18}. Given a {\em weighted} undirected graph $G = (V,E,ω)$, and a pair of parameters $ε> 0$, $β= 1,2,\ldots$, a graph $G'= (V,H,ω')$ is a {\em $(1+ε,β)$-hopset} (aka, a {\em near-exact hopset}) of $G$ if for every $u,v \in V$, $$d_G(u,v) \le d_{G\cup G'}^{(β)}(u,v) \le (1+ε)d_G(u,v)~,$$ where $ d_{G\cup G'}^{(β)}(u,v)$ stands for a $β$-(hop)-bounded distance between $u$ and $v$ in the union graph $G \cup G'$. It was shown in \cite{EN16} that for any $n$-vertex $G$ and $ε$ and $κ$ as above, there exists a $(1+ε,β)$-hopset with $\tilde{O}(n^{1+1/κ})$ edges, with $β= β_{EP}$. Not only the two results of \cite{EP01} and \cite{EN16} are strikingly similar, but so are also their proof techniques. Moreover, Thorup-Zwick's later construction of near-additive spanners \cite{TZ06} was also shown in \cite{EN19,HP17} to provide hopsets with analogous (to that of \cite{TZ06}) properties. In this survey we explore this intriguing phenomenon, sketch the basic proof techniques used for these results, and highlight open questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源