论文标题

医学图像中具有里程碑意义的检测和匹配的端到端深度学习方法

An End-to-end Deep Learning Approach for Landmark Detection and Matching in Medical Images

论文作者

Grewal, Monika, Deist, Timo M., Wiersma, Jan, Bosman, Peter A. N., Alderliesten, Tanja

论文摘要

医学图像中的解剖学上标记可以为两个图像的对齐提供其他指导信息,这反过来又对许多医疗应用至关重要。但是,手动地标注释是劳动密集型的。因此,我们提出了一种端到端的深度学习方法,以对二维(2D)图像的成对自动检测地标对应。我们的方法由一个暹罗神经网络组成,该网络经过训练,可以将图像中的显着位置识别为地标的显着位置,并从两个不同图像中预测地标对的匹配概率。我们从168个下腹计算机断层扫描(CT)扫描中对2D横向切片进行了训练。我们在22,206对2D切片上测试了该方法,强度,仿射和弹性转换水平不同。所提出的方法平均发现每个图像对的平均639、466和370个地标匹配,分别为强度,仿射和弹性变换,其空间匹配误差最多为1 mm。此外,对于具有强度,仿射和弹性变换的图像对,超过99%的地标对在2 mm,4 mm和8 mm的空间匹配误差范围内。为了调查我们在临床环境中开发的方法的实用性,我们还通过从三名患者的随访CT扫描中选择的成对横向切片测试了我们的方法。对结果的目视检查显示,骨质解剖区域以及缺乏突出强度梯度的软组织中的具有里程碑意义的匹配。

Anatomical landmark correspondences in medical images can provide additional guidance information for the alignment of two images, which, in turn, is crucial for many medical applications. However, manual landmark annotation is labor-intensive. Therefore, we propose an end-to-end deep learning approach to automatically detect landmark correspondences in pairs of two-dimensional (2D) images. Our approach consists of a Siamese neural network, which is trained to identify salient locations in images as landmarks and predict matching probabilities for landmark pairs from two different images. We trained our approach on 2D transverse slices from 168 lower abdominal Computed Tomography (CT) scans. We tested the approach on 22,206 pairs of 2D slices with varying levels of intensity, affine, and elastic transformations. The proposed approach finds an average of 639, 466, and 370 landmark matches per image pair for intensity, affine, and elastic transformations, respectively, with spatial matching errors of at most 1 mm. Further, more than 99% of the landmark pairs are within a spatial matching error of 2 mm, 4 mm, and 8 mm for image pairs with intensity, affine, and elastic transformations, respectively. To investigate the utility of our developed approach in a clinical setting, we also tested our approach on pairs of transverse slices selected from follow-up CT scans of three patients. Visual inspection of the results revealed landmark matches in both bony anatomical regions as well as in soft tissues lacking prominent intensity gradients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源