论文标题
Colour Twist操作员I:频谱和波功能
Colour-Twist Operators I: Spectrum and Wave Functions
论文作者
论文摘要
我们在任何理论中介绍了一个新的运营商,其'T Hooft the hooft-$ n $限制都称为Colour Twist运营商。它们的定义是通过将颜色跟踪通过全局对称性转换扭曲,并与标准的,无缠绕的单个跟踪操作员不断链接。特别是,由$ {\ cal n} = 4 $ sym扭曲的操作员之间的相关函数扩展了$γ$ formed的理论中的函数。最一般的变形也打破了Lorentz的对称性,但在我们考虑的示例中保留了整合性。在本文中,我们专注于渔网模型中的Colour Twist操作员。我们用一个和两个标量字段为最简单的扭转型操作员展示了我们的方法,我们使用字段理论和集成性方法进行非扰动研究,找到了完美的匹配。我们还提出了在渔网模型中的可集成性计算中出现的百特方程的定量条件。本文的结果构成了通过量子光谱曲线方法来构建相关函数可变构造分离的关键步骤。
We introduce a new class of operators in any theory with a 't Hooft large-$N$ limit that we call colour-twist operators. They are defined by twisting the colour-trace with a global symmetry transformation and are continuously linked to standard, un-twisted single-trace operators. In particular, correlation functions between operators that are twisted by an R-symmetry of ${\cal N}=4$ SYM extend those in the $γ$-deformed theory. The most general deformation also breaks the Lorentz symmetry but preserves integrability in the examples we consider. In this paper, we focus on colour-twist operators in the fishnet model. We exemplify our approach for the simplest colour-twist operators with one and two scalar fields, which we study non-perturbatively using field-theoretical as well as integrability methods, finding a perfect match. We also propose the quantisation condition for the Baxter equation appearing in the integrability calculation in the fishnet model. The results of this paper constitute a crucial step towards building the separation of variable construction for the correlation functions by means of the Quantum Spectral Curve approach.