论文标题
选择性可分离性和最大空间上的$ q^+$
Selective separability and $q^+$ on maximal spaces
论文作者
论文摘要
给定一个遗传性微不足道的理想$ \ MATHCAL {i} $在可数集$ x $上,我们使用Martin的公理来产生零维的最大拓扑$τ^\ Mathcal {i} $ x $ on $ x $ \ Mathcal {i} = \ {\ emptySet \} $,此外,如果$ \ nathcal {i} $是$ p^+$,则$ p^+$,然后$τ^\ mathcal {i} $是可分离的(ss),并且如果$ q^ies $ q^+$},则是$ q^+^ustable(ss),因此特别是,我们获得常规的最大空间,满足属性SS和$ q^+$的所有布尔组合。
Given a hereditarily meager ideal $\mathcal{I}$ on a countable set $X$ we use Martin's axiom for countable posets to produce a zero-dimensional maximal topology $τ^\mathcal{I}$ on $X$ such that $τ^\mathcal{I}\cap \mathcal{I}=\{\emptyset\}$ and, moreover, if $\mathcal{I}$ is $p^+$ then $τ^\mathcal{I}$ is selectively separable (SS) and if $\mathcal{I}$ is $q^+$, so is $τ^\mathcal{I}$. In particular, we obtain regular maximal spaces satisfying all boolean combinations of the properties SS and $q^+$.