论文标题

商单二型矢量组是nilpotent

The quotient Unimodular Vector group is nilpotent

论文作者

Khanna, Reema, Jose, Selby, Sharma, Sampat, Rao, Ravi A.

论文摘要

Jose-rao介绍并研究了特殊的单模型矢量组$ sum_r(r)$和$ eum_r(r)$,即其基本的单模型矢量亚组。他们证明,对于$ r \ geq 2 $,$ eum_r(r)$是$ sum_r(r)$的普通子组。 Jose-rao定理说,商$ sum_r(r)/eum_r(r)$,对于$ r \ geq 2 $,是正交商组$ so_ so_ {2(r + 1)}(r + 1)}(r)}(r)/eo__ {2(r + 1)$。已知后一组被Hazrat-vavilov的工作赋予了Nilpotent,遵循A. bak的方法;前者也是如此。 在本文中,我们将直接证明A. Bak的想法,以证明商的单模型矢量群是$ \ leq d =​​ \ dim(r)$的类nilpotent。我们还使用A. Bak方法启发的Quillen-Suslin理论,以证明如果$ r = a [x] $,则使用$ a $ a a $ a a local戒指,那么商的单型向量群是Abelian。

Jose-Rao introduced and studied the Special Unimodular Vector group $SUm_r(R)$ and $EUm_r(R)$, its Elementary Unimodular Vector subgroup. They proved that for $r \geq 2$, $EUm_r(R)$ is a normal subgroup of $SUm_r(R)$. The Jose-Rao theorem says that the quotient Unimodular Vector group, $SUm_r(R)/EUm_r(R)$, for $r \geq 2$, is a subgroup of the orthogonal quotient group $SO_{2(r+1)}(R)/EO_{2(r + 1)}(R)$. The latter group is known to be nilpotent by the work of Hazrat-Vavilov, following methods of A. Bak; and so is the former. In this article we give a direct proof, following ideas of A. Bak, to show that the quotient Unimodular Vector group is nilpotent of class $\leq d = \dim(R)$. We also use the Quillen-Suslin theory, inspired by A. Bak's method, to prove that if $R = A[X]$, with $A$ a local ring, then the quotient Unimodular Vector group is abelian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源