论文标题

在索引期望曲率上

On index expectation curvature for manifolds

论文作者

Knill, Oliver

论文摘要

在紧凑的Riemannian 2d-manifold m上,索引期望曲率k(x)= E [i_f(x)]是对Poincare-Hopf指数I_F(X)的期望,因此可以满足Guss-Bonnet的关系,即M的间隔在m上超过m是Euler特征x(m)。与高斯 - 骨网络整合体不同,这种曲率通常是非本地的。我们表明,对于具有嵌入边界的小型2D manifolds m,在确定的截面曲率符号E中可行的2D-manifold n中,存在确定符号E^d的索引期望k(x)。函数k(x)被构造为截面期望值曲率的乘积,平均k_k(x)= e [i_k(x)]莫尔斯函数的概率空间f,i_f(x)是i_k(x)的产物I_K(x)的产物,I_K是独立的,并且不相关。

Index expectation curvature K(x) = E[i_f(x)] on a compact Riemannian 2d-manifold M is the expectation of Poincare-Hopf indices i_f(x) and so satisfies the Gauss-Bonnet relation that the interval of K over M is Euler characteristic X(M). Unlike the Gauss-Bonnet-Chern integrand, such curvatures are in general non-local. We show that for small 2d-manifolds M with boundary embedded in a parallelizable 2d-manifold N of definite sectional curvature sign e, an index expectation K(x) with definite sign e^d exists. The function K(x) is constructed as a product of sectional index expectation curvature averages K_k(x) = E[i_k(x)] of a probability space of Morse functions f for which i_f(x) is the product of i_k(x), where the i_k are independent and so uncorrelated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源