论文标题

RGB-D的进程和猛击

RGB-D Odometry and SLAM

论文作者

Civera, Javier, Lee, Seong Hun

论文摘要

现代RGB-D传感器的出现在许多应用领域都产生了重大影响,包括机器人技术,增强现实(AR)和3D扫描。它们是传统范围传感器(例如LiDar)的低成本,低功率和低尺寸替代品。此外,与RGB摄像机不同,RGB-D传感器提供了额外的深度信息,以消除需要逐帧三角测量的3D场景重建。这些优点使它们在移动机器人技术和AR中非常受欢迎,在这里估计自我动机和3D场景结构引起了极大的兴趣。这种空间理解可以使机器人无需碰撞即可自动导航,并允许用户插入与图像流相一致的虚拟实体。在本章中,我们回顾了使用RGB-D流输入的循环仪和同时定位和映射(以其首字母缩写的大规模知道)的共同公式。这两个主题是密切相关的,因为前者旨在跟踪相对于场景的本地地图跟踪增量相机运动,而后者则以一致性共同估算摄像机轨迹和全球地图。在这两种情况下,标准方法都使用非线性优化技术最大程度地降低了成本函数。本章由三个主要部分组成:在第一部分中,我们介绍了探测器的基本概念和猛击,并激发了RGB-D传感器的使用。我们还提供了与大多数进程和猛击算法相关的数学初步。在第二部分中,我们详细介绍了SLAM系统的三个主要组成部分:相机姿势跟踪,场景映射和循环关闭。对于每个组成部分,我们描述了文献中提出的不同方法。在最后一部分中,我们提供了有关先进研究主题的简要讨论,并提及了最先进的研究。

The emergence of modern RGB-D sensors had a significant impact in many application fields, including robotics, augmented reality (AR) and 3D scanning. They are low-cost, low-power and low-size alternatives to traditional range sensors such as LiDAR. Moreover, unlike RGB cameras, RGB-D sensors provide the additional depth information that removes the need of frame-by-frame triangulation for 3D scene reconstruction. These merits have made them very popular in mobile robotics and AR, where it is of great interest to estimate ego-motion and 3D scene structure. Such spatial understanding can enable robots to navigate autonomously without collisions and allow users to insert virtual entities consistent with the image stream. In this chapter, we review common formulations of odometry and Simultaneous Localization and Mapping (known by its acronym SLAM) using RGB-D stream input. The two topics are closely related, as the former aims to track the incremental camera motion with respect to a local map of the scene, and the latter to jointly estimate the camera trajectory and the global map with consistency. In both cases, the standard approaches minimize a cost function using nonlinear optimization techniques. This chapter consists of three main parts: In the first part, we introduce the basic concept of odometry and SLAM and motivate the use of RGB-D sensors. We also give mathematical preliminaries relevant to most odometry and SLAM algorithms. In the second part, we detail the three main components of SLAM systems: camera pose tracking, scene mapping and loop closing. For each component, we describe different approaches proposed in the literature. In the final part, we provide a brief discussion on advanced research topics with the references to the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源