论文标题

为面部图像剥削语义DEBLURING

Exploiting Semantics for Face Image Deblurring

论文作者

Shen, Ziyi, Lai, Wei-Sheng, Xu, Tingfa, Kautz, Jan, Yang, Ming-Hsuan

论文摘要

在本文中,我们通过深层卷积神经网络利用语义提示提出了一种有效而有效的面部去蓝色算法。由于人的面孔是高度结构化的,并共享统一的面部成分(例如眼睛和嘴巴),因此这种语义信息为恢复提供了强大的事先。我们将面部语义标签纳入输入先验,并提出适应性的结构损失,以使面部局部结构在端到端深度卷积神经网络中定期。具体来说,我们首先使用粗脱毛网络来减少输入面图像上的运动模糊。然后,我们采用一个解析网络来从粗脱毛图像中提取语义特征。最后,精细的Deblurring网络利用语义信息来恢复清晰的面部图像。我们以感知和对抗性损失来训练网络,以产生光真逼真的结果。提出的方法以更准确的面部特征和细节来恢复锋利的图像。定量和定性评估表明,在恢复质量,面部识别速度和执行速度方面,所提出的面部脱毛算法对最新方法的表现有益。

In this paper, we propose an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks. As the human faces are highly structured and share unified facial components (e.g., eyes and mouths), such semantic information provides a strong prior for restoration. We incorporate face semantic labels as input priors and propose an adaptive structural loss to regularize facial local structures within an end-to-end deep convolutional neural network. Specifically, we first use a coarse deblurring network to reduce the motion blur on the input face image. We then adopt a parsing network to extract the semantic features from the coarse deblurred image. Finally, the fine deblurring network utilizes the semantic information to restore a clear face image. We train the network with perceptual and adversarial losses to generate photo-realistic results. The proposed method restores sharp images with more accurate facial features and details. Quantitative and qualitative evaluations demonstrate that the proposed face deblurring algorithm performs favorably against the state-of-the-art methods in terms of restoration quality, face recognition and execution speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源