论文标题
幽灵从约束中:奥特格拉德斯基定理的概括
Ghost from constraints: a generalization of Ostrogradsky theorem
论文作者
论文摘要
Ostrogradsky定理指出,当欧拉 - 拉格朗日方程高于非平稳化假设下的二阶微分方程时,哈密顿量无限。由于可以通过引入辅助变量和约束来始终将较高的非排效拉格朗日式的lagangian始终重塑为同等的系统,因此可以想象,幽灵和较高衍生品之间的链接可以重新诠释为鬼与约束与约束与/或或/或或/或或或/或或或或或或或或或/或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或副或或或或或为作用。我们发现,通过探索包含辅助变量的一般理论的联合国/界限,后者的观点实际上比前者更具一般性的观点,对于euler-lagrange方程来说本质上可以二阶或低于此。对于包括辅助变量在内的拉格朗日人,我们得出了退化条件,以逃避即使只能在本地解决辅助变量解决,即使辅助变量也可以应用。对于具有Lagrange倍增器的约束的理论,我们建立了包含非体力学(速度依赖性)约束的标准,导致缺乏哈密顿量的局部最低限度。我们的标准包括Ostrogradsky Theorem作为一种特殊情况,不仅可以检测与高级导数相关的幽灵,还可以检测来自系统中低阶导数的幽灵。我们讨论如何逃避这样的鬼魂。我们还提供了各种具体示例,以突出我们的一般论点的应用和限制。
Ostrogradsky theorem states that Hamiltonian is unbounded when Euler-Lagrange equations are higher than second-order differential equations under the nondegeneracy assumption. Since higher-order nondegenerate Lagrangian can be always recast into an equivalent system with at most first-order derivatives by introducing auxiliary variables and constraints, it is conceivable that the link between ghost and higher derivatives may be reinterpreted as a link between ghost and constraints and/or auxiliary variables. We find that the latter point of view actually provides more general perspective than the former, by exploring the un/boundedness of the Hamiltonian for general theories containing auxiliary variables, for which Euler-Lagrange equations can be essentially second order or lower than that. For Lagrangians including auxiliary variables nonlinearly, we derive the degeneracy condition to evade the Ostrogradsky ghost that can apply even if auxiliary variables can be solved only locally. For theories with constraints with Lagrange multipliers, we establish criteria for inclusion of nonholonomic (velocity-dependent) constraints leading to the absence of local minimum of Hamiltonian. Our criteria include the Ostrogradsky theorem as a special case, and can detect not only ghost associated with higher-order derivatives, but also ghost coming from lower-order derivatives in system with constraints. We discuss how to evade such a ghost. We also provide various specific examples to highlight application and limitation of our general arguments.