论文标题
扩展$ k(m,n,p)$方程的对称性不整合性
Symmetry nonintegrability for extended $K(m,n,p)$ equation
论文作者
论文摘要
在本文中,我们研究了扩展$ k(m,n,p)$方程的对称性$$ u_t = a(u^p)_ {xxxxx} + b(u^n)_ {xxx} + c(u^m)对于$ a \ neq 0 $和$ p \ neq 1,-4 $,此方程没有大于五的订单的通用对称性,因此无法对称。
In the present paper we study symmetries of extended $K(m,n,p)$ equation $$ u_t=a(u^p)_{xxxxx}+b(u^n)_{xxx} + c(u^m)_{x} + f(u), $$ where $a,b,c$ are arbitrary real constants and $m,n,p$ are arbitrary integers, and prove that for $a\neq 0$ and $p\neq 1,-4$ this equation has no generalized symmetries of order greater than five and hence is not symmetry integrable.