论文标题
$ \ MATHCAL n = 2 $大型R-CHARGE:$ SU(n)$案件
$\mathcal N=2$ conformal gauge theories at large R-charge: the $SU(N)$ case
论文作者
论文摘要
可以在双缩放机构中研究具有全球对称性的保形理论,在双缩放方案中,相互作用强度降低,而全球电荷增加。在这里,我们研究通用4D $ \ MATHCAL n = 2 $ $ su(n)$级别的理论,具有大型R-Charge $ Q _ {\ rm rm r} \ to \ infty $,带有固定的't Hooft-like耦合$κ= q _ = q _ = q _ {\ rm rm rm r} \ ym,我们的分析涉及两种不同类别的自然缩放函数。第一个是根据手性/抗手力学两点功能而构建的。第二个涉及手性操作员在$ \ frac {1} {2} $ -bps wilson-maldacena loops的情况下的单点功能。在Rank-1 $ SU(2)$案例中,最近已显示两点扇区被辅助手性随机矩阵模型捕获。我们将分析扩展到$ su(n)$理论,并提供了一种算法,该算法为所有被考虑的模型(等级的参数计算任意长的扰动扩展。由$ \ Mathcal n = 1 $ superspace中的三循环计算对领先和临近领先的贡献进行了交叉检查。这种扰动分析将最大的非平面feynman图确定为在双缩放限制中的相关图表。在Wilson-Maldacena行业中,我们获得了缩放功能的封闭表达式,对任何等级有效,$κ$有效。作为应用程序,我们定量分析了较大的hooft耦合限制$κ\ gg 1 $,在其中我们确定了所有扰动和非扰动贡献。后者与重电BPS状态有关,并阐明了与其质谱的精确对应关系。
Conformal theories with a global symmetry may be studied in the double scaling regime where the interaction strength is reduced while the global charge increases. Here, we study generic 4d $\mathcal N=2$ $SU(N)$ gauge theories with conformal matter content at large R-charge $Q_{\rm R}\to \infty$ with fixed 't Hooft-like coupling $κ= Q_{\rm R}\,g_{\rm YM}^{2}$. Our analysis concerns two distinct classes of natural scaling functions. The first is built in terms of chiral/anti-chiral two-point functions. The second involves one-point functions of chiral operators in presence of $\frac{1}{2}$-BPS Wilson-Maldacena loops. In the rank-1 $SU(2)$ case, the two-point sector has been recently shown to be captured by an auxiliary chiral random matrix model. We extend the analysis to $SU(N)$ theories and provide an algorithm that computes arbitrarily long perturbative expansions for all considered models, parametric in the rank. The leading and next-to-leading contributions are cross-checked by a three-loops computation in $\mathcal N=1$ superspace. This perturbative analysis identifies maximally non-planar Feynman diagrams as the relevant ones in the double scaling limit. In the Wilson-Maldacena sector, we obtain closed expressions for the scaling functions, valid for any rank and $κ$. As an application, we analyze quantitatively the large 't Hooft coupling limit $κ\gg 1$ where we identify all perturbative and non-perturbative contributions. The latter are associated with heavy electric BPS states and the precise correspondence with their mass spectrum is clarified.