论文标题

重新审视了Volkov-Akulov-Starobinsky Supergravity

Volkov-Akulov-Starobinsky supergravity revisited

论文作者

Aldabergenov, Yermek

论文摘要

我们发现了Volkov-Akulov-Starobinsky超级实力的新实现,即Supergravity中的Starobinsky通货膨胀模型,与Nilpotent Superfield相连,描述了Volkov-Akulov Goldstino。我们的构造基于nocalekähler电位$ k = -3 \ log(t+\ bar {t})$用于充气场,并且可以在通货膨胀后描述de Sitter真空,其中goldstino Auxilariary Auxilariary Consents损坏了超对称性。实际上,我们表明,具有$ k =-α\ log(t+\ bar {t})$的更通用的模型,价格为$ 3 \leqα\ Lessim 6.37 $可以适应类似Starobinsky的通货膨胀,具有通用预测$ N_S \ simeq 1- \ simeq 1- \ frac frac {2} $ frac {2} n_e} \ frac {4α} {(α-2)^2n_e^2} $,而$ 6.37 \lyseSimα\ Lessim 7.23 $可行的山顶通货膨胀是可能的(带有$ n_s $和$ r $接近上述表达式)。我们得出了通常在通货膨胀量表周围的全部组件动作和Sinflaton,Gravitino和Interatino的质量。最后,我们表明,我们的一个模型可以通过受约束的手性曲率超级领域偶双重二元。

We find new realizations of Volkov-Akulov-Starobinsky supergravity, i.e. Starobinsky inflationary models in supergravity coupled to a nilpotent superfield describing Volkov-Akulov goldstino. Our constructions are based on the no-scale Kähler potential $K=-3\log(T+\bar{T})$ for the inflaton field, and can describe de Sitter vacuum after inflation where supersymmetry is broken by the goldstino auxiliary component. In fact, we show that a more general class of models with $K=-α\log(T+\bar{T})$ for $3\leqα\lesssim 6.37$ can accomodate Starobinsky-like inflation with the universal prediction $n_s\simeq 1-\frac{2}{N_e}$ and $r\simeq \frac{4α}{(α-2)^2N_e^2}$, while for $6.37\lesssimα\lesssim 7.23$ viable hilltop inflation is possible (with $n_s$ and $r$ close to the above expressions). We derive the full component action and the masses of sinflaton, gravitino, and inflatino that are generally around the inflationary Hubble scale. Finally, we show that one of our models can be dualized into higher-derivative supergravity with constrained chiral curvature superfield.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源