论文标题
Stone定理的独立性与布尔素数理想定理
The independence of Stone's Theorem from the Boolean Prime Ideal Theorem
论文作者
论文摘要
我们提供了一个排列模型,其中Stone的定理(每个度量空间都是paracompact)都是错误的,而布尔值理想定理(布尔代数中的每个理想都延伸到主要理想)都是正确的。我们模型中的错误度量空间仅达到合理距离,而不是元素状。转移定理给出了Zermelo-Fraenkel环境中可比的独立性,回答了良好,树木和沃森的问题。
We give a permutation model in which Stone's Theorem (every metric space is paracompact) is false and the Boolean Prime Ideal Theorem (every ideal in a Boolean algebra extends to a prime ideal) is true. The erring metric space in our model attains only rational distances and is not metacompact. Transfer theorems give the comparable independence in the Zermelo-Fraenkel setting, answering a question of Good, Tree and Watson.