论文标题

用于凸优化的级别测定方法的扰动视图

A perturbation view of level-set methods for convex optimization

论文作者

Estrin, Ron, Friedlander, Michael P.

论文摘要

凸优化的级别集合方法基于以下想法:某些问题可以被参数化,以便可以将其解决方案恢复为扎根过程的限制过程。这个想法一次又一次地出现在凸问题的一系列算法中。在这里,我们证明了强大的二元性是成功级别方法的必要条件。在没有强双重性的情况下,级别的方法可以识别出$ε$ - 不可行的点,这些点不会收敛到可行点,因为$ε$趋于零。级别的方法也被用作证明技术,以建立与Slater的约束资格不同的强大二元性条件。

Level-set methods for convex optimization are predicated on the idea that certain problems can be parameterized so that their solutions can be recovered as the limiting process of a root-finding procedure. This idea emerges time and again across a range of algorithms for convex problems. Here we demonstrate that strong duality is a necessary condition for the level-set approach to succeed. In the absence of strong duality, the level-set method identifies $ε$-infeasible points that do not converge to a feasible point as $ε$ tends to zero. The level-set approach is also used as a proof technique for establishing sufficient conditions for strong duality that are different from Slater's constraint qualification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源