论文标题

具有量化不确定性的地震成像的工作流程

A workflow for seismic imaging with quantified uncertainty

论文作者

Barbosa, Carlos H. S., Kunstmann, Liliane N. O., Silva, Rômulo M., Alves, Charlan D. S., Silva, Bruno S., Filho, Djalma M. S., Mattoso, Marta, Rochinha, Fernando A., Coutinho, Alvaro L. G. A.

论文摘要

地震图像的解释由于存在多种不确定性来源而面临挑战。数据测量,源定位和地下地球物理特性中存在不确定性。了解不确定性的角色以及如何影响结果是石油和天然气行业决策过程的重要组成部分。地球物理成像是耗时的。当我们添加不确定性量化时,它既变成时间又变密。在这项工作中,我们提出了具有量化不确定性的地震成像的工作流程。我们基于统计信息来建立贝叶斯断层扫描,反向时间迁移和图像解释的工作流程。工作流探索了有效的混合并行计算策略,以减少反向时间迁移执行时间。高水平的数据压缩将用于减少工作流活动和数据存储之间的数据传输。我们在运行时捕获和分析出处数据,以改善工作流程执行,监视和调试的开销可忽略不计。 Marmousi2速度模型基准的数值实验证明了工作流能力。我们观察到出色的弱和强可伸缩性,结果表明,使用有损耗的数据压缩并不会阻碍地震成像不确定性定量。

The interpretation of seismic images faces challenges due to the presence of several uncertainty sources. Uncertainties exist in data measurements, source positioning, and subsurface geophysical properties. Understanding uncertainties' role and how they influence the outcome is an essential part of the decision-making process in the oil and gas industry. Geophysical imaging is time-consuming. When we add uncertainty quantification, it becomes both time and data-intensive. In this work, we propose a workflow for seismic imaging with quantified uncertainty. We build the workflow upon Bayesian tomography, reverse time migration, and image interpretation based on statistical information. The workflow explores an efficient hybrid parallel computational strategy to decrease the reverse time migration execution time. High levels of data compression are applied to reduce data transfer among workflow activities and data storage. We capture and analyze provenance data at runtime to improve workflow execution, monitoring, and debugging with negligible overhead. Numerical experiments on the Marmousi2 Velocity Model Benchmark demonstrate the workflow capabilities. We observe excellent weak and strong scalability, and results suggest that the use of lossy data compression does not hamper the seismic imaging uncertainty quantification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源