论文标题
i.i.d.的平均值的对数concovity and log-convexity随机变量
Log-concavity and log-convexity of moments of averages of i.i.d. random variables
论文作者
论文摘要
我们表明,阶矩的顺序小于I.I.D的平均值的1个。正随机变量是对数符号。在秩序的瞬间至少1时,我们猜想该序列是log-convex,并表明这最终适用于整数矩(在忽略了序列的第一个$ p^2 $项之后)。
We show that the sequence of moments of order less than 1 of averages of i.i.d. positive random variables is log-concave. For moments of order at least 1, we conjecture that the sequence is log-convex and show that this holds eventually for integer moments (after neglecting the first $p^2$ terms of the sequence).