论文标题
抛物线抗晶状体形态差异的分析分类,
Analytic Classification of Germs of Parabolic Antoholomorphic Diffeomorphisms of Codimension k
论文作者
论文摘要
我们研究了抛物线固定点周围的抗晶型差异性的局部动力学。我们首先给出正常形式。然后,我们提供一个完整的分类,包括用于分析结合的抛物线固定点的抗晶状细菌的模量空间。然后,我们研究了一些几何应用:实际分析不变曲线的存在,全态和抗型抛物线抛物线菌细菌的骨膜和抗原态根的存在,可通向全体形态和抗透明质球抛物性寄生虫细菌。
We investigate the local dynamics of antiholomorphic diffeomorphisms around a parabolic fixed point. We first give a normal form. Then we give a complete classification including a modulus space for antiholomorphic germs with a parabolic fixed point under analytic conjugacy. We then study some geometric applications: existence of real analytic invariant curve, existence of holomorphic and antiholomorphic roots of holomorphic and antiholomorphic parabolic germs, commuting holomorphic and antiholomorphic parabolic germs.