论文标题
用于缓存网络的在线凸优化
Online Convex Optimization for Caching Networks
论文作者
论文摘要
当文件受欢迎程度未知且可能是非平稳的情况时,我们研究了无线边缘缓存的问题。 $ j $ caches的银行收到文件请求,并根据服务缓存而为每个请求付出实用程序。网络动态决定要存储每个缓存在每个缓存以及如何路由它们的文件,以最大程度地提高总实用程序。假定请求序列是从任意分布中绘制的,从而捕获了请求的时间变化,时间变化或空间位置。对于这种具有挑战性的环境,我们提出了\ emph {二分超级加速算法}(bsca),该算法并没有遗憾($ r_t/t/t \ to 0 $)。也就是说,随着Time Horizon $ t $的增加,BSCA通过缓存配置实现了相同的性能,我们会选择知道所有将来的请求。该算法的学习速率的特征是其遗憾表达,被发现为$ r_t = o(\ sqrt {jt})$,它与内容目录大小无关。对于单调查情况,我们证明这是可实现的最低界限。 BSCA在每个步骤上都需要$ j $ Projections在盒子和简洁的交叉点上,我们建议使用量身定制的算法。我们的模型是第一个在网络缓存问题和在线凸优化之间建立联系的模型,我们通过讨论各种实际扩展并与最先进的竞争对手进行了痕迹驱动的比较来证明其通用性。
We study the problem of wireless edge caching when file popularity is unknown and possibly non-stationary. A bank of $J$ caches receives file requests and a utility is accrued for each request depending on the serving cache. The network decides dynamically which files to store at each cache and how to route them, in order to maximize total utility. The request sequence is assumed to be drawn from an arbitrary distribution, thus capturing time-variance, temporal, or spatial locality of requests. For this challenging setting, we propose the \emph{Bipartite Supergradient Caching Algorithm} (BSCA) which provably exhibits no regret ($R_T/T \to 0$). That is, as the time horizon $T$ increases, BSCA achieves the same performance with the cache configuration that we would have chosen knowing all future requests. The learning rate of the algorithm is characterized by its regret expression, found to be $R_T=O(\sqrt{JT})$, which is independent of the content catalog size. For the single-cache case, we prove that this is the lowest attainable bound. BSCA requires at each step $J$ projections on intersections of boxes and simplices, for which we propose a tailored algorithm. Our model is the first that draws a connection between the network caching problem and Online Convex Optimization, and we demonstrate its generality by discussing various practical extensions and presenting a trace-driven comparison with state-of-the-art competitors.