论文标题

通用的对抗性攻击注意力和由此产生的数据集DAMAGENET

Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet

论文作者

Chen, Sizhe, He, Zhengbao, Sun, Chengjin, Yang, Jie, Huang, Xiaolin

论文摘要

已经发现了对深神经网络(DNN)的对抗性攻击已有数年了。但是,仅当受害者DNN的信息众所周知或可以通过结构相似性或大量查询来估算时,现有的对抗攻击才具有很高的成功率。在本文中,我们建议攻击注意力(AOA),这是DNNS通常共有的语义属性。当传统的交叉熵损失被注意力损失取代时,AOA的可转移性显着提高。由于AOA仅改变了损失函数,因此可以很容易地将其与其他可转移性增强技术结合在一起,然后实现SOTA性能。我们将AOA应用于ImageNet验证设置中的50000个对抗样本以打败许多神经网络,从而将数据集命名为Damagenet。 13个训练有素的DNN在Damagenet上进行了测试,并且所有这些DNN的错误率超过85%。即使进行防御或对抗性训练,大多数模型仍然在Damagenet上仍保持超过70%的错误率。 Damagenet是第一个通用对手数据集。它可以自由下载,并作为鲁棒性测试和对抗训练的基准。

Adversarial attacks on deep neural networks (DNNs) have been found for several years. However, the existing adversarial attacks have high success rates only when the information of the victim DNN is well-known or could be estimated by the structure similarity or massive queries. In this paper, we propose to Attack on Attention (AoA), a semantic property commonly shared by DNNs. AoA enjoys a significant increase in transferability when the traditional cross entropy loss is replaced with the attention loss. Since AoA alters the loss function only, it could be easily combined with other transferability-enhancement techniques and then achieve SOTA performance. We apply AoA to generate 50000 adversarial samples from ImageNet validation set to defeat many neural networks, and thus name the dataset as DAmageNet. 13 well-trained DNNs are tested on DAmageNet, and all of them have an error rate over 85%. Even with defenses or adversarial training, most models still maintain an error rate over 70% on DAmageNet. DAmageNet is the first universal adversarial dataset. It could be downloaded freely and serve as a benchmark for robustness testing and adversarial training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源