论文标题

独特的延续属性和庞加莱的不平等,用于高级分数拉普拉斯人,施加了反问题

Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems

论文作者

Covi, Giovanni, Mönkkönen, Keijo, Railo, Jesse

论文摘要

当$ s \ in(-n/2,\ infty)\ setMinus \ mathbb {z} $时,我们证明了分数laplacian $(-Δ)^s $的唯一延续属性。此外,当$ s \ geq 0 $时,我们研究了操作员$(-Δ)^s $的庞加莱型不平等。我们应用结果表明,从与高阶分数磁性schrödinger方程相关的dirichlet到neumann地图上,可以唯一恢复,最多可恢复量规,电势和磁性电位。我们还研究具有单数电势的高阶分数schrödinger方程。在这两种情况下,我们都获得了方程式的Runge近似属性。此外,我们证明了$ d $ - 平面ra ra的部分数据问题的唯一性结果。我们的工作扩展了一些最新的总体运营商反向问题的结果。

We prove a unique continuation property for the fractional Laplacian $(-Δ)^s$ when $s \in (-n/2,\infty)\setminus \mathbb{Z}$. In addition, we study Poincaré-type inequalities for the operator $(-Δ)^s$ when $s\geq 0$. We apply the results to show that one can uniquely recover, up to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated to the higher order fractional magnetic Schrödinger equation. We also study the higher order fractional Schrödinger equation with singular electric potential. In both cases, we obtain a Runge approximation property for the equation. Furthermore, we prove a uniqueness result for a partial data problem of the $d$-plane Radon transform in low regularity. Our work extends some recent results in inverse problems for more general operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源