论文标题
弹跳紧凑的物体I:Oppenheimer-Snyder倒塌的量子扩展
Bouncing compact objects I: Quantum extension of the Oppenheimer-Snyder collapse
论文作者
论文摘要
本文提出了对Oppenheimer-Snyder模型的概括,该模型描述了一个弹跳的紧凑对象。负责反弹的校正以一般的方式进行了参数化,以便对奇异性分辨率的特定机制保持不可知。因此,它基于薄外壳方法发展了有效的理论,从而推断了这种紫外线完全重力崩溃的通用特性。主要结果以适用于一般UV模型的强约束的形式出现:如果折叠恒星的动力学表现出弹跳,则始终发生在下方,或者最多出现在地平线形成的能量阈值下,因此只能形成瞬时的捕获地平线,而捕获的区域永远不会被捕获的区域。该结论仅依赖于i)在恒星的类似表面和ii)诱导度量的连续性的假设和ii)的假设)假设经典的Schwarzschild几何形状描述了恒星的(真空)外部。特别是,它完全独立于恒星内部的校正选择,从而导致奇异性分辨率。因此,本模型提供了一个通用框架来讨论弹跳的紧凑对象,为此,内部几何形状由经典或量子反弹对其进行建模。在后来的情况下,我们关于捕获区域的形成的不做结果表明,需要其他结构(例如内部地平线的形成)来构建一致的物质崩溃模型描述黑白孔弹跳。实际上,需要这种额外的结构来保持限制限制高曲率状态的量子重力效应,从而为当前的量子黑白孔弹跳模型提供了新的挑战。
This article proposes a generalization of the Oppenheimer-Snyder model which describes a bouncing compact object. The corrections responsible for the bounce are parameterized in a general way so as to remain agnostic about the specific mechanism of singularity resolution at play. It thus develops an effective theory based on a thin shell approach, inferring generic properties of such a UV complete gravitational collapse. The main result comes in the form of a strong constraint applicable to general UV models : if the dynamics of the collapsing star exhibits a bounce, it always occurs below, or at most at the energy threshold of horizon formation, so that only an instantaneous trapping horizon may be formed while a trapped region never forms. This conclusion relies solely on i) the assumption of continuity of the induced metric across the time-like surface of the star and ii) the assumption of a classical Schwarzschild geometry describing the (vacuum) exterior of the star. In particular, it is completely independent of the choice of corrections inside the star which leads to singularity-resolution. The present model provides thus a general framework to discuss bouncing compact objects, for which the interior geometry is modeled either by a classical or a quantum bounce. In the later case, our no-go result regarding the formation of trapped region suggests that additional structure, such as the formation of an inner horizon, is needed to build consistent models of matter collapse describing black-to-white hole bounces. Indeed, such additional structure is needed to keep quantum gravity effects confined to the high curvature regime, in the deep interior region, providing thus a new challenge for current constructions of quantum black-to-white hole bounce models.