论文标题
驱动量表 - 湍流介质中的密度去相关量表关系
The driving scale -- density decorrelation scale relation in a turbulent medium
论文作者
论文摘要
超音速湍流产生的密度波动对于天体物理化学模型至关重要。这些密度波动的特性是两个点相关函数随规模分离的增加而降低。密度去相关长度尺度($ l _ {\ rm dec} $)与湍流驾驶量表($ L _ {\ rm驱动器} $)之间的关系确定湍流如何影响跨媒介物(ISM)中的密度和化学结构,并且是使用构图的关键组成部分。我们运行了一组超音速磁流体动力动力湍流的数值模拟,具有不同的声音马赫数($ \ Mathcal {M} _S _S = 4.5,7 $),并以不同的尺度(1/2.5,1/5,1/5,1/7)驱动。我们将$ l _ {\ rm dec} -l _ {\ rm驱动器} $关系作为马赫数,驾驶比例和磁场视线线(LOS)的方向的关系。我们发现平均比率$ l _ {\ rm dec}/l _ {\ rm drive} = 0.19 \ pm 0.10 $,当时平均在快照,马赫数,驾驶长度和三个损失上。对于与磁场平行的LO,密度结构在统计上较小,$ L _ {\ rm dec} -l _ {\ rm drive} $关系更紧密,$ l _ {\ rm dec}/l _ {\ rm dec}/l _ {\ rm drive} = 0.112 \ pm pm 0.012 \ pm 0.0124 $。我们在使用化学示踪剂观察的背景下讨论了我们的结果,以限制ISM中主要的湍流驾驶量表。
Density fluctuations produced by supersonic turbulence are of great importance to astrophysical chemical models. A property of these density fluctuations is that the two point correlation function decreases with increasing scale separation. The relation between the density decorrelation length scale ($L_{\rm dec}$) and the turbulence driving scale ($L_{\rm drive}$) determines how turbulence affects the density and chemical structures in the interstellar medium (ISM), and is a key component for using observations of atomic and molecular tracers to constrain turbulence properties. We run a set of numerical simulations of supersonic magnetohydrodynamic turbulence, with different sonic Mach numbers ($\mathcal{M}_s=4.5, 7$) , and driven on varying scales (1/2.5, 1/5, 1/7) the box length. We derive the $L_{\rm dec}-L_{\rm drive}$ relation as a function of Mach number, driving scale, and the orientation of the line-of-sight (LOS) in respect to the magnetic-field. We find that the mean ratio $L_{\rm dec}/L_{\rm drive} = 0.19 \pm 0.10$, when averaged over snapshots, Mach numbers, driving lengths, and the three LOSs. For LOS parallel to the magnetic field the density structures are statistically smaller and the $L_{\rm dec}-L_{\rm drive}$ relation is tighter, with $L_{\rm dec}/L_{\rm drive} = 0.112 \pm 0.024$. We discuss our results in the context of using observations of chemical tracers to constrain the dominant turbulence driving scale in the ISM.