论文标题

在随机风景中自我归一化随机行走的中等偏差

Moderate deviations for the self-normalized random walk in random scenery

论文作者

Peretz, Tal

论文摘要

让$ g $是带顶点套装$ v $的无限连接图。令$ \ {s_n:n \ in \ mathbb n_0 \} $为$ g $上的简单随机步行,让$ \ {ξ(v):v \ in v \} $是i.i.d的集合。独立于随机步行的随机变量。在随机风景中定义随机步行为$ t_n = \ sum_ {k = 0}^nξ(s_k)$,而归一化变量$ v_n =(\ sum_ {k = 0}^nξ^2(s_k) \ ell^2_n(v))^{1/2} $。对于$ g = \ mathbb z^d $和$ g = \ mathbb t_d $,$ d $ -ary树,我们为自级化的过程提供较大的偏差结果$ t_n \ sqrt {n}/(l_ {l_ {n,2} v_n)在场景上仅在有限的有限矩假设下。

Let $G$ be an infinite connected graph with vertex set $V$. Let $\{S_n: n \in \mathbb N_0 \}$ be the simple random walk on $G$ and let $\{ ξ(v) : v \in V \}$ be a collection of i.i.d. random variables which are independent of the random walk. Define the random walk in random scenery as $T_n = \sum_{k=0}^n ξ(S_k)$, and the normalization variables $V_n = (\sum_{k=0}^n ξ^2(S_k))^{1/2}$ and $L_{n,2} = (\sum_{v \in V} \ell^2_n(v))^{1/2}$. For $G= \mathbb Z^d$ and $G = \mathbb T_d$, the $d$-ary tree, we provide large deviations results for the self-normalized process $T_n \sqrt{n}/(L_{n,2}V_n)$ under only finite moment assumptions on the scenery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源