论文标题
旨在实施魔术光偶极陷阱,以限制地面和rydberg-state Cesium Cold Atoms
Towards implementation of a magic optical-dipole trap for confining ground-state and Rydberg-state cesium cold atoms
论文作者
论文摘要
长期的ryd-rydberg连贯寿命对于实施高保真量子逻辑门,多体物理和其他量子信息协议很有趣。然而,对于Rydberg原子,通常由常规的遥远红色光偶极陷阱(ODT)形成的电势通常是排斥的,这将导致快速原子损失和实验序列的低重复率。这些问题可以通过魔术ODT解决。我们对ODT的魔术失调进行了计算,以限制剖宫产状态和瑞德伯格州的潜力相同。 We used a sum-over-states method to calculate the dynamic polarizabilities of $6S_{1/2}$ ground state and highly-excited ($nS_{1/2}$ and $nP_{3/2}$) Rydberg state of cesium atoms, and identify corresponding magic detuning for optical wavelengths in the range of $850 - 2000$ nm.我们估计了通过包括不同的耗散机制,估计了在魔术ODT中限制在魔法ODT中的捕获寿命。此外,我们在实验上已经实现了一个1879.43 nm的单频激光系统,具有瓦级输出功率,用于设置Magic ODT,价格为$ 6s_ {1/2} $ ogch offer-State和$ 84p_ {3/2} $ rydberg-rydberg-State Cesium Coodium Cold Cold atoms。
Long ground-Rydberg coherence lifetime is interesting for implementing high-fidelity quantum logic gates, many-body physics, and other quantum information protocols. However, the potential formed by a conventional far-off-resonance red-detuned optical-dipole trap (ODT) is usually repulsive for Rydberg atoms, which will result in fast atom loss and low repetition rate of the experimental sequence. These issues can be addressed by a magic ODT. We performed the calculation of ODT's magic detuning for confinement of cesium ground state and Rydberg state with the same potential well. We used a sum-over-states method to calculate the dynamic polarizabilities of $6S_{1/2}$ ground state and highly-excited ($nS_{1/2}$ and $nP_{3/2}$) Rydberg state of cesium atoms, and identify corresponding magic detuning for optical wavelengths in the range of $850 - 2000$ nm. We estimated the trapping lifetime of cesium Rydberg atoms confined in the magic ODT by including different dissipative mechanisms. Furthermore, we have experimentally realized an 1879.43-nm single-frequency laser system with a watt-level output power for setting up the magic ODT for $6S_{1/2}$ ground-state and $84P_{3/2}$ Rydberg-state cesium cold atoms.