论文标题
口腔校:使用智能手机摄像头实现自我检查和对口腔健康的认识
OralCam: Enabling Self-Examination and Awareness of Oral Health Using a Smartphone Camera
论文作者
论文摘要
由于缺乏医疗资源或口腔健康意识,口腔疾病通常未经检查和未经治疗,影响了全世界的大量人口。随着配备传感器的智能手机的出现,移动应用程序为促进口腔健康提供了有希望的可能性。但是,据我们所知,没有移动健康(MHealth)解决方案可以直接支持用户自我检查的口腔健康状况。本文介绍了Oralcam,这是第一个互动应用程序,它可以通过拍摄口腔智能手机的照片来对最终用户对五种常见口服状况(疾病或早期疾病信号)进行自我检查。 Oralcam允许用户注释其他信息(例如,生活习惯,疼痛和出血)来增强输入图像,并通过层次,概率和视觉说明呈现输出,以帮助外行用户用户了解检查结果。在我们的内部数据集中开发的,该数据集由牙科专家注释的3,182张口腔照片组成,我们基于深度学习的框架在五个具有较高本地化精度的条件下达到了0.787的平均检测灵敏度。在为期一周的野外用户研究(n = 18)中,大多数参与者使用口腔胶和解释检查结果毫无困难。两项专家访谈进一步验证了口阿拉卡姆(Oralcam)在提高用户对口腔健康意识的可行性。
Due to a lack of medical resources or oral health awareness, oral diseases are often left unexamined and untreated, affecting a large population worldwide. With the advent of low-cost, sensor-equipped smartphones, mobile apps offer a promising possibility for promoting oral health. However, to the best of our knowledge, no mobile health (mHealth) solutions can directly support a user to self-examine their oral health condition. This paper presents OralCam, the first interactive app that enables end-users' self-examination of five common oral conditions (diseases or early disease signals) by taking smartphone photos of one's oral cavity. OralCam allows a user to annotate additional information (e.g. living habits, pain, and bleeding) to augment the input image, and presents the output hierarchically, probabilistically and with visual explanations to help a laymen user understand examination results. Developed on our in-house dataset that consists of 3,182 oral photos annotated by dental experts, our deep learning based framework achieved an average detection sensitivity of 0.787 over five conditions with high localization accuracy. In a week-long in-the-wild user study (N=18), most participants had no trouble using OralCam and interpreting the examination results. Two expert interviews further validate the feasibility of OralCam for promoting users' awareness of oral health.