论文标题

广义的Avikainen的估计及其应用

A generalized Avikainen's estimate and its applications

论文作者

Taguchi, Dai

论文摘要

Avikainen通过$ | x- \ x- \ wideHat {x- \ wideHat {x- \ wideHat {x} | $的矩提供了差异$ \ mathbb {e} [| g(x)-g(\ wideHat {x})|在本文中,我们将此估算概括为具有Hölder连续分配函数的任何一维随机变量$ x $。作为应用,我们提供了数值方案的收敛速率,用于由布朗运动和对称$α$稳定的一维随机微分方程(SDE)的解决方案,并带有$α\ in(1,2)$(1,2)$,brownian brownian运动,带有零星和hurst trift和hurst trife trive and hurst paramies trive in dien in(0,1/2)$ in(0,1/2)$ herst in grood and drive drive drive y insection n in(1,2)空间白噪声,具有不规则系数。我们还考虑了由布朗运动驱动的SDE的最大和积分类型功能的数值方案,其系数和与多级蒙特卡洛方法相关的不规则系数和回报。

Avikainen provided a sharp upper bound of the difference $\mathbb{E}[|g(X)-g(\widehat{X})|^{q}]$ by the moments of $|X-\widehat{X}|$ for any one-dimensional random variables $X$ with bounded density and $\widehat{X}$, and function of bounded variation $g$. In this article, we generalize this estimate to any one-dimensional random variable $X$ with Hölder continuous distribution function. As applications, we provide the rate of convergence for numerical schemes for solutions of one-dimensional stochastic differential equations (SDEs) driven by Brownian motion and symmetric $α$-stable with $α\in (1,2)$, fractional Brownian motion with drift and Hurst parameter $H \in (0,1/2)$, and stochastic heat equations (SHEs) with Dirichlet boundary conditions driven by space--time white noise, with irregular coefficients. We also consider a numerical scheme for maximum and integral type functionals of SDEs driven by Brownian motion with irregular coefficients and payoffs which are related to multilevel Monte Carlo method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源