论文标题
广义的Avikainen的估计及其应用
A generalized Avikainen's estimate and its applications
论文作者
论文摘要
Avikainen通过$ | x- \ x- \ wideHat {x- \ wideHat {x- \ wideHat {x} | $的矩提供了差异$ \ mathbb {e} [| g(x)-g(\ wideHat {x})|在本文中,我们将此估算概括为具有Hölder连续分配函数的任何一维随机变量$ x $。作为应用,我们提供了数值方案的收敛速率,用于由布朗运动和对称$α$稳定的一维随机微分方程(SDE)的解决方案,并带有$α\ in(1,2)$(1,2)$,brownian brownian运动,带有零星和hurst trift和hurst trife trive and hurst paramies trive in dien in(0,1/2)$ in(0,1/2)$ herst in grood and drive drive drive y insection n in(1,2)空间白噪声,具有不规则系数。我们还考虑了由布朗运动驱动的SDE的最大和积分类型功能的数值方案,其系数和与多级蒙特卡洛方法相关的不规则系数和回报。
Avikainen provided a sharp upper bound of the difference $\mathbb{E}[|g(X)-g(\widehat{X})|^{q}]$ by the moments of $|X-\widehat{X}|$ for any one-dimensional random variables $X$ with bounded density and $\widehat{X}$, and function of bounded variation $g$. In this article, we generalize this estimate to any one-dimensional random variable $X$ with Hölder continuous distribution function. As applications, we provide the rate of convergence for numerical schemes for solutions of one-dimensional stochastic differential equations (SDEs) driven by Brownian motion and symmetric $α$-stable with $α\in (1,2)$, fractional Brownian motion with drift and Hurst parameter $H \in (0,1/2)$, and stochastic heat equations (SHEs) with Dirichlet boundary conditions driven by space--time white noise, with irregular coefficients. We also consider a numerical scheme for maximum and integral type functionals of SDEs driven by Brownian motion with irregular coefficients and payoffs which are related to multilevel Monte Carlo method.