论文标题

Bartnik数据的NNSC-bobordism在高维

NNSC-Cobordism of Bartnik Data in High Dimensions

论文作者

Hu, Xue, Shi, Yuguang

论文摘要

在简短的说明中,我们制定了与非负标量曲率(NNSC)填充有关的三个问题。宽松地说,前两个问题的重点是:$(n-1)$ - 尺寸bartnik data $ \ big(σ_i ^{n-1},γ_i,γ_i,h_i \ big)$,$ i = 1,2 $,nnsc-cobordant? (即,有一个$ n $维的紧凑型riemannian歧管$ \ big(ω ^n,g \ big)$,带有标量曲率$ r(g)\ geq 0 $和边界$ \ partial $ \ partialω=σ_{1} {1} \cupσ_{2} $ n是$ n $ usguse $ n是$ g n是$ g n是$ g n是$γ_i ^ $ g $,$ h_i $是$ \ big(ω^n,g \ big)$的$σ_i$的平均曲率)。如果$ \ big(\ mathbb {s}^{n-1},γ_ {\ rm std},0 \ big)$是正标度曲率(PSC)cobordant to $ \ big(σ_1^{n-1^{n-1},γ_1,γ_1,γ_1,H_1 \ big)$,$ \ big \ big(s) γ_ {\ rm std} \ big)$表示标准的圆形单位球,然后$ \ big(σ_1 ^{n-1},γ_1,H_1 \ big)$ $ nnsc填充。正如格罗莫夫(Gromov)的猜想与正质量定理有关,至少在$ n = 3 $的情况下,我们的问题也与Penrose不平等相关。我们的第三个问题是在下面定义的$λ\ big(σ^{n-1},γ\ big)$上。

In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are $(n-1)$-dimensional Bartnik data $\big(Σ_i ^{n-1}, γ_i, H_i\big)$, $i=1,2$, NNSC-cobordant? (i.e., there is an $n$-dimensional compact Riemannian manifold $\big(Ω^n, g\big)$ with scalar curvature $R(g)\geq 0$ and the boundary $\partial Ω=Σ_{1} \cup Σ_{2}$ such that $γ_i$ is the metric on $Σ_i ^{n-1}$ induced by $g$, and $H_i$ is the mean curvature of $Σ_i$ in $\big(Ω^n, g\big)$). If $\big(\mathbb{S}^{n-1},γ_{\rm std},0\big)$ is positive scalar curvature (PSC) cobordant to $\big(Σ_1 ^{n-1}, γ_1, H_1\big)$, where $\big(\mathbb{S}^{n-1}, γ_{\rm std}\big)$ denotes the standard round unit sphere then $\big(Σ_1 ^{n-1}, γ_1, H_1\big)$ admits an NNSC fill-in. Just as Gromov's conjecture is connected with positive mass theorem, our problems are connected with Penrose inequality, at least in the case of $n=3$. Our third problem is on $Λ\big(Σ^{n-1}, γ\big)$ defined below.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源