论文标题

抛物线局部问题,具有数值均质化的共振误差的指数衰减

A parabolic local problem with exponential decay of the resonance error for numerical homogenization

论文作者

Abdulle, Assyr, Arjmand, Doghonay, Paganoni, Edoardo

论文摘要

本文旨在准确有效计算有效量,例如,均质的系数,用于近似具有振荡系数的部分微分方程的解决方案。典型的多尺度方法基于微麦克罗耦合,其中宏模型描述了粗尺度的行为,并且仅在本地求解微型模型以提高宏模型中缺少的有效数量。微问题在整个宏观域内的小域中解决的事实意味着在微观域的边界上施加了人工边界条件。对这些人造边界条件的天真处理导致$ \ varepsilon/δ$的一阶误差,其中$ \ varepsilon <δ$代表小规模振荡的特征长度,而$Δ^d $是微型域的大小。此错误主导着所有其他错误,源于宏和微问题的离散化,其减少是当今工程多尺度计算的主要问题。本工作的目的是分析一种抛物线方法,首先在[A. Abdulle,D。Arjmand,E。Paganoni,C。R。Acad。科学。巴黎,Ser。 I,2019],用于计算$ \ varepsilon/δ$的任意高收敛速率的均质系数。该分析涵盖了周期性微型结构的设置,并提供了数值模拟,以验证更通用设置的理论发现,例如随机固定微结构。

This paper aims at an accurate and efficient computation of effective quantities, e.g., the homogenized coefficients for approximating the solutions to partial differential equations with oscillatory coefficients. Typical multiscale methods are based on a micro-macro coupling, where the macro model describes the coarse scale behaviour, and the micro model is solved only locally to upscale the effective quantities, which are missing in the macro model. The fact that the micro problems are solved over small domains within the entire macroscopic domain, implies imposing artificial boundary conditions on the boundary of the microscopic domains. A naive treatment of these artificial boundary conditions leads to a first order error in $\varepsilon/δ$, where $\varepsilon < δ$ represents the characteristic length of the small scale oscillations and $δ^d$ is the size of micro domain. This error dominates all other errors originating from the discretization of the macro and the micro problems, and its reduction is a main issue in today's engineering multiscale computations. The objective of the present work is to analyze a parabolic approach, first announced in [A. Abdulle, D. Arjmand, E. Paganoni, C. R. Acad. Sci. Paris, Ser. I, 2019], for computing the homogenized coefficients with arbitrarily high convergence rates in $\varepsilon/δ$. The analysis covers the setting of periodic micro structure, and numerical simulations are provided to verify the theoretical findings for more general settings, e.g. random stationary micro structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源