论文标题
机器学习转移效率的嘈杂量子步行
Machine learning transfer efficiencies for noisy quantum walks
论文作者
论文摘要
已知量子效应在跨网络的粒子转移方面具有优势。为了实现这一优势,必须找到图形类型和量子系统相干性的要求。在这里,我们表明,从模拟示例中学习可以自动化这些要求的过程。自动化是通过使用特定类型的卷积神经网络来完成的,该网络学会了解与哪个网络以及在哪个相干要求下进行量子优势。我们的机器学习方法用于研究不同大小的循环图上的嘈杂量子步行。我们发现,即使对于训练集之外的图形,也可以预测整个破碎参数范围的量子优势的存在。我们的结果对于在量子实验中的优势表现出色,并为自动化科学研究和发现铺平道路非常重要。
Quantum effects are known to provide an advantage in particle transfer across networks. In order to achieve this advantage, requirements on both a graph type and a quantum system coherence must be found. Here we show that the process of finding these requirements can be automated by learning from simulated examples. The automation is done by using a convolutional neural network of a particular type that learns to understand with which network and under which coherence requirements quantum advantage is possible. Our machine learning approach is applied to study noisy quantum walks on cycle graphs of different sizes. We found that it is possible to predict the existence of quantum advantage for the entire decoherence parameter range, even for graphs outside of the training set. Our results are of importance for demonstration of advantage in quantum experiments and pave the way towards automating scientific research and discoveries.