论文标题
在加洛伊斯扩展家族中的frobenius元素的分布
Distribution of Frobenius elements in families of Galois extensions
论文作者
论文摘要
考虑到Galois扩展名$ L/K $的数字字段,我们通过有限的Galois组和RAMIFIENT THEROPE的表示,通过不变性来描述Frobenius元素的精细分布属性。我们展示了我们评估这些不变性物质的明确系列,并推断出对可能的不对称的详细理解和精确描述。我们在Chebotarev密度定理中的通用术语的通用波动中建立了一般性,该定理在GRH下比Murty-Murty-Saradha和Lagarias-Odlyzko和Serre界限的Murty-Murty-Saradha和Bellaïche的完善都更加清晰,并且我们认为这是最重要的(我们认为这是莫尔特的质量进步),这是对莫尔特的质量进展的范围。在GRH和关于零多重性至一定高度的多重性的假设下,我们表明,在某些家庭中,这些波动以恒定的较低阶段为主。为了应用我们的想法,我们完善了K. Murty和J.Bellaïche的结果,并回答了N. Ng的问题。特别是,在$ l/\ mathbb q $的情况下,是galois且可验证的,我们在给定的Frobenius集合中证明了K. Murty的猜想的强烈形式。我们使用的工具包括基于限制分布的Rubinstein-Sarnak机械以及代数,分析,表示理论,概率和组合技术的混合物。
Given a Galois extension $L/K$ of number fields, we describe fine distribution properties of Frobenius elements via invariants from representations of finite Galois groups and ramification theory. We exhibit explicit families of extensions in which we evaluate these invariants, and deduce a detailed understanding and a precise description of the possible asymmetries. We establish a general bound on the generic fluctuations of the error term in the Chebotarev density theorem which under GRH is sharper than the Murty-Murty-Saradha and Bellaïche refinements of the Lagarias-Odlyzko and Serre bounds, and which we believe is best possible (assuming simplicity, it is of the quality of Montgomery's conjecture on primes in arithmetic progressions). Under GRH and a hypothesis on the multiplicities of zeros up to a certain height, we show that in certain families these fluctuations are dominated by a constant lower order term. As an application of our ideas we refine and generalize results of K. Murty and of J. Bellaïche and we answer a question of N. Ng. In particular, in the case where $L/\mathbb Q$ is Galois and supersolvable, we prove a strong form of a conjecture of K. Murty on the unramified prime ideal of least norm in a given Frobenius set. The tools we use include the Rubinstein-Sarnak machinery based on limiting distributions and a blend of algebraic, analytic, representation theoretic, probabilistic and combinatorial techniques.