论文标题
在Dirichlet Biquadratic领域
On Dirichlet biquadratic fields
论文作者
论文摘要
我们研究了$ k_n的理想类组的$ 4 $ -Lank:= \ Mathbb {q}(\ sqrt {-n},\ sqrt {n})$。我们的主要结果是,对于$ \ text {cl}(k_n)$的$ 4 $ lank $ n $ $ n $的积极比例为$ 4 $ rank,$ω_3(n)-1 $,其中$ω_3(n)$是$ n $ $ n $ $ 3 $ modulo $ $ $ 4 $ 4 $ 4 $ 4 $的prime Divisors的数量。
We study the $4$-rank of the ideal class group of $K_n := \mathbb{Q}(\sqrt{-n}, \sqrt{n})$. Our main result is that for a positive proportion of the squarefree integers $n$ we have that the $4$-rank of $\text{Cl}(K_n)$ equals $ω_3(n) - 1$, where $ω_3(n)$ is the number of prime divisors of $n$ that are $3$ modulo $4$.