论文标题

mir教程的深度学习

Deep Learning for MIR Tutorial

论文作者

Schindler, Alexander, Lidy, Thomas, Böck, Sebastian

论文摘要

深度学习已成为视觉计算中的艺术状态,并连续出现在音乐信息检索(MIR)和音频检索域中。为了引起人们对这个话题的关注,我们建议对Mir深度学习的介绍性教程。除了对神经网络的一般介绍外,拟议的教程还涵盖了广泛的MIR相关深度学习方法。 \ textbf {卷积神经网络}目前是基于深度学习的音频检索的事实上的标准。 \ textbf {经常性神经网络}已被证明可以有效地发作检测任务,例如Beat或Audio-Event检测。 \ textbf {siamese网络}已显示在学习音频表示和特定于音乐相似性检索的距离功能方面有效。我们将将学术和工业的观点纳入教程。伴随教程,我们将为教程中介绍的内容以及对最新工作和文学的参考来创建一个GitHub存储库,以进一步阅读。会议结束后,该存储库将继续公开。

Deep Learning has become state of the art in visual computing and continuously emerges into the Music Information Retrieval (MIR) and audio retrieval domain. In order to bring attention to this topic we propose an introductory tutorial on deep learning for MIR. Besides a general introduction to neural networks, the proposed tutorial covers a wide range of MIR relevant deep learning approaches. \textbf{Convolutional Neural Networks} are currently a de-facto standard for deep learning based audio retrieval. \textbf{Recurrent Neural Networks} have proven to be effective in onset detection tasks such as beat or audio-event detection. \textbf{Siamese Networks} have been shown effective in learning audio representations and distance functions specific for music similarity retrieval. We will incorporate both academic and industrial points of view into the tutorial. Accompanying the tutorial, we will create a Github repository for the content presented at the tutorial as well as references to state of the art work and literature for further reading. This repository will remain public after the conference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源