论文标题
拓扑绝缘子中的光电流测量
Photocurrent measurements in topological insulator $\text{Bi}_2\text{Se}_3$ nanowires
论文作者
论文摘要
圆形光藻电流是一种有前途的自旋 - 环互惠的新方法。迄今为止,这种电流仅在拓扑绝缘片或扩展膜中诱导。目前尚不清楚它们是否可以在纳米版本中生成。在本文中,我们演示了$ \ text {bi} _2 \ text {se} _3 $ nanowires中的圆形光子电流的产生。每种纳米线显示拓扑表面状态。在这里,我们通过驱动光波生成和区分不同的光电流贡献。我们通过控制激光光偏振,将圆形光藻电流与由于热塞贝克效应引起的圆形电流分开。结果揭示了由旋转摩托明锁定和自旋轨道效应引起的纳米线中的自旋偏振表面 - 迪拉克电子流动。本字母中描述的第二个光电流贡献是由热塞贝克效应引起的。通过扫描光电流,可以在空间上解决;在沿纳米线逆转梯度方向后,光电流会改变其符号,并接近金触点,不同光电流贡献的幅度受到与接触的接触的影响。在纳米线的中心,金触点/拓扑绝缘子堆栈的影响消失了,自旋偏振电流沿纳米线保持恒定。这为纳米级旋转轨道人的拓扑纳米线和杂化结构中的全光自旋发电打开了一种新的方法。
Circular photogalvanic currents are a promising new approach for spin-optoelectronics. To date, such currents have only been induced in topological insulator flakes or extended films. It is not clear whether they can be generated in nanodevices. In this paper, we demonstrate the generation of circular photogalvanic currents in $\text{Bi}_2\text{Se}_3$ nanowires. Each nanowire shows topological surface states. Here, we generate and distinguish the different photocurrent contributions via the driving light wave. We separate the circular photogalvanic currents from those due to thermal Seebeck effects, through controlling the laser light polarization. The results reveal a spin-polarized surface-Dirac electron flow in the nanowires arising from spin-momentum locking and spin-orbit effects. The second photocurrent contribution described in this letter is caused by the thermal Seebeck effect. By scanning the photocurrent, it can be spatially resolved; upon reversing the gradient direction along the nanowire, the photocurrent changes its sign, and close to the gold contacts, the amplitudes of the different photocurrent contributions are affected by the proximity to the contacts. In the center of the nanowires, where the effects from the gold contact/ topological insulator stacks vanish, the spin-polarized current remains constant along the nanowires. This opens up a new method of all-optical spin current generation in topological insulator nanowires and hybrid structures for nanoscale spin-orbitronics.