论文标题
高维随机波动率模型的样品协方差矩阵的特征结构具有重型尾巴
The eigenstructure of the sample covariance matrices of high-dimensional stochastic volatility models with heavy tails
论文作者
论文摘要
我们考虑了一个$ p $维的时间序列,其中尺寸$ p $随着样本尺寸$ n $而增加。结果数据矩阵$ x $遵循随机波动率模型:每个条目由正随机波动率项组成,乘以独立的噪声项。波动率乘数在每行和行中引入依赖性。我们研究了在噪声的常规变化假设下,研究样品协方差矩阵$ xx'$的特征值和特征向量的渐近行为。特别是,我们证明了对中心和归一化特征值的点过程的泊松收敛,并为作用于痕迹的功能的限制理论提供了极限理论。我们证明了具有附加线性依赖性结构的随机波动率模型以及随机波动率模型的相关结果,在$ n $增加时,随着时间变化的波动率术语的可能性很高。我们提供具有非常简单的结构的特征向量的明确近似值。证明这些结果的主要工具是重尾时间序列的大偏差定理,主张研究重型随机矩阵的特征结构的统一方法。
We consider a $p$-dimensional time series where the dimension $p$ increases with the sample size $n$. The resulting data matrix $X$ follows a stochastic volatility model: each entry consists of a positive random volatility term multiplied by an independent noise term. The volatility multipliers introduce dependence in each row and across the rows. We study the asymptotic behavior of the eigenvalues and eigenvectors of the sample covariance matrix $XX'$ under a regular variation assumption on the noise. In particular, we prove Poisson convergence for the point process of the centered and normalized eigenvalues and derive limit theory for functionals acting on them, such as the trace. We prove related results for stochastic volatility models with additional linear dependence structure and for stochastic volatility models where the time-varying volatility terms are extinguished with high probability when $n$ increases. We provide explicit approximations of the eigenvectors which are of a strikingly simple structure. The main tools for proving these results are large deviation theorems for heavy-tailed time series, advocating a unified approach to the study of the eigenstructure of heavy-tailed random matrices.